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Summary

Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to

be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the

presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded

by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability.

Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip

growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show

that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects

on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with

normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants

with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for

full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for

tip growth.
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Introduction

Tip growth is a form of polarized cell expansion in which

growth is confined to the apical portion of the cell. A variety

of cells including root hairs, pollen tubes, algal rhizoids and

protonemata expand by tip growth. Underlying tip growth

are coordinated cellular activities including the spatiotem-

poral control of ion gradients, distribution of cell-wall

material via exocytosis, retrieval of excess materials by

endocytosis and maintenance of cytoskeletal dynamics

(Hepler et al., 2001).

The actin cytoskeleton has become the focus for under-

standing tip growth because pharmacological studies using

drugs that affect actin dynamics result in the inhibition of tip

growth and cytoplasmic streaming (Gibbon et al., 1999;

Miller et al., 1999; Vidali et al., 2001). In particular, at low

concentrations of actin depolymerizing drugs, where active

cytoplasmic streaming still occurs, tip growth is inhibited

and a subapical actin network is eradicated (Vidali et al.,

2001), suggesting that a dynamic network of actin filaments

mediates tip growth. Additional evidence supporting the

role of actin dynamics in tip growth comes from studies that

alter the cellular concentrations of actin-associated proteins.

Aberrant expression of profilin (Vidali et al., 2001), actin-

interacting protein (Ketelaar et al., 2004), cyclase-associated

protein (Deeks et al., 2007), ROP GTPases (Chen et al., 2003;

Molendijk et al., 2001), formins (Cheung and Wu, 2004;

Deeks et al., 2005) or Arp2/3 complex proteins (Harries et al.,

2005; Mathur et al., 2003a,b; Perroud and Quatrano, 2006)

lead to irregular or completely arrested tip growth.

Among actin-binding proteins, the actin depolymerizing

factor (ADF)/cofilin family has emerged as a central regulator

of actin turnover. ADF/cofilin function is essential in diverse

organisms, including Dictyostelium discoideum (Aizawa

et al., 1995), budding yeast (Iida et al., 1993; Moon et al.,

1993), Drosophila (Gunsalus et al., 1995), Caenorhabditis

elegans (McKim et al., 1994) and mouse (Gurniak et al.,

2005). Biochemical studies show that ADF/cofilin is capable
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of severing (Andrianantoandro and Pollard, 2006; Maciver

et al., 1991; Pavlov et al., 2007) and depolymerizing actin

filaments from their pointed ends (Carlier et al., 1997), by

binding preferentially to ADP-bound actin subunits (Blanch-

oin and Pollard, 1999) and inducing a helical twist in the actin

filament (McGough et al., 1997). Additional evidence

supports a role for ADF/cofilin as a nucleator of actin

polymerization when present at high concentrations (Andri-

anantoandro and Pollard, 2006). These activities are

consistent with a role for maintaining a dynamic actin

cytoskeleton, by creating new barbed ends from pre-existing

filaments, recycling the monomeric actin pool or inducing

de novo polymerization of actin filaments.

In plants, various studies have suggested that ADF plays

an important role in tip growth. However, because of the

presence of multiple isoforms in many plants, it has been

difficult to clearly define the role of ADF in tip-growing

cells. In Arabidopsis thaliana, overexpression of AtADF1

results in the reduction of root hair length, whereas knock-

down of AtADF1 levels using RNA interference (RNAi)

increases root hair length (Dong et al., 2001b). In another

study, expression of GFP-NtADF in tobacco pollen tubes

inhibited tip growth in a dose-dependent manner (Chen

et al., 2002). At levels of expression that did not affect

growth, GFP-NtADF co-localized with actin filaments in a

subapical actin mesh and throughout the pollen tube

(Chen et al., 2002). In root hairs, ADF has also been

localized to the apical portion of the growing hair (Jiang

et al., 1997). Similarly in lily pollen tubes, ADF has been

localized by immunofluorescence to a subapical actin

fringe, a site believed to consist of dynamic actin filaments

(Lovy-Wheeler et al., 2006), suggesting a critical role for

ADF in tip growth.

ADF/cofilin activity in most organisms is regulated by

N-terminal phosphorylation at a highly conserved serine

residue. In the unphosphorylated state, ADF/cofilin binds

ADP-bound actin with high affinity, and is therefore able to

sever and depolymerize actin filaments; conversely, when

phosphorylated, ADF/cofilin binding to actin is attenuated

and, consequently, severing and depolymerization activities

are abolished (Blanchoin et al., 2000; Moriyama et al., 1996;

Ressad et al., 1998). In animal cells, phosphoregulation of

ADF/cofilin is important for processes such as neurite

extension (Endo et al., 2007), maintenance of the lamellipo-

dium (Kiuchi et al., 2007; Zebda et al., 2000) and cleavage

furrow abscission during cytokinesis (Kaji et al., 2003). In

animals, the regulation of ADF/cofilins is coordinated by the

activity of slingshot phosphatase (Niwa et al., 2002), and LIM

(Arber et al., 1998; Yang et al., 1998) and TES kinases

(Toshima et al., 2001). Although a specific plant ADF kinase

or phosphatase has not been identified, evidence suggests

that ADF activity in plants is also controlled by phosphor-

ylation. A protein extract from French bean containing a

calmodulin-like domain protein kinase (CDPK) specifically

phosphorylates the conserved N-terminal serine 6 of maize

ADF 3 (Allwood et al., 2001). Two-dimensional electropho-

resis revealed the presence of both phosphorylated and

unphosphorylated forms of ADF in plant extracts from

Arabidopsis (Dong et al., 2001b), maize (Jiang et al., 1997)

and tobacco pollen (Chen et al., 2003). Additionally, GFP-

labelled unphosphorylatable ADF S6A co-localizes with actin

filaments, unlike the phosphomimetic GFP-ADF S6D (Chen

et al., 2002). A study in tobacco pollen tubes shows that

overexpression of ADF S6A, but not of S6D, was able to

suppress a tip growth defect caused by ROP GTPase

overexpression (Chen et al., 2003). Despite this evidence,

without a loss-of-function phenotype, it is unclear whether

ADF is required for tip growth, and to what extent phos-

phoregulation of ADF is physiologically relevant.

Moss protonemata, which expand by tip growth (Menand

et al., 2007), are an excellent model for studying this

process. Protonemal cells are abundant, easily propagated

and can be readily imaged by microscopy. Additionally,

the Physcomitrella patens genome has recently been

sequenced, making molecular genetic approaches straight-

forward (Rensing et al., 2008). Here, we use RNAi in moss to

demonstrate that ADF is essential for plant viability. Loss of

ADF dramatically alters F-actin organization, resulting in an

inhibition of tip growth. We performed complementation

studies of the ADF RNAi phenotype using unphosphorylat-

able and phosphomimetic ADF mutants. Our results show

that phosphorylation of the N-terminally conserved serine is

required for efficient growth and, importantly, for polariza-

tion of growth.

Results

Moss has a single ADF gene

We searched the P. patens genome for ADF, and found a

single locus containing a predicted gene product highly

similar to other ADF proteins (Table S1). Additionally, a

single ADF expressed sequence tag (EST) was identified

from available databases (Rensing et al., 2008; Nishiyama

et al., 2003). The presence of a single ADF gene in moss is

strikingly different from other plants, which generally have

multiple ADF isoforms (Maciver and Hussey, 2002; Ruzicka

et al., 2007). The moss ADF gene structure is also distinct

because it lacks introns (Figure 1a). In contrast, Arabidopsis

and Oryza sativa ADFs have a conserved gene structure

containing two introns (Dong et al., 2001a; Maciver and

Hussey, 2002). Despite these differences, moss ADF shares

�50–70% identity and �70–80% similarity with other plant

ADFs at the amino acid level (Table S1), and a sequence

alignment with other ADF/cofilins of known structure sug-

gests that it has a conserved tertiary structure (Figure 1b).

Moss ADF comprises 142 amino acids with a predicted

molecular weight of 16.2 kDa, typical for ADF/cofilin
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proteins, which are generally between 113 and 168 amino

acids long (Maciver and Hussey, 2002).

ADF is essential for plant viability

We used an established transient RNAi assay (Bezanilla

et al., 2005; Vidali et al., 2007) to silence ADF expression in

moss protonemal cells. In this assay we use a stable line

(NLS-4) that constitutively expresses a nuclear-localized

GFP-GUS fusion protein. Transformation of NLS-4 protop-

lasts with GUS-RNAi, an RNAi construct that targets the GUS

sequence in the GFP-GUS fusion transcript, results in

silencing of the nuclear GFP-GUS reporter (Bezanilla et al.,

2005; Figure 2a). The loss of nuclear GFP-GUS expression,

and thus GFP fluorescence, offers a quick and reliable

method for identifying plants that are actively silencing

(Bezanilla et al., 2005).

In our transient RNAi assay, we simultaneously silence the

nuclear GFP-GUS reporter and ADF. To do this, we fused a

region of GUS to the moss ADF coding sequence to generate

an RNAi construct that targets GUS and the coding sequence

of ADF (CDS-RNAi; Figure 1a). When this construct is

transformed into NLS-4, silenced plants, as marked by the

loss of nuclear GFP fluorescence, are severely stunted and

often have diminished chlorophyll fluorescence, indicative

of cell senescence (Figure 2a). As tip growth is the only form

of growth for protonemal moss tissue (Menand et al., 2007),

the stunted phenotype resulting from the CDS-RNAi con-

struct suggests that ADF is essential for tip growth. The

extent of growth inhibition was determined by quantifying

Figure 1. Physcomitrella patens actin depolymerizing factor (ADF) gene and protein structure.

(a) Gene structure of PpADF. The 5¢-untranslated region (UTR), coding sequence (CDS) and 3¢-UTR regions are shown in rectangles, and the location of the start and

stop codons are labelled. Sequences used for ADF RNAi targeting constructs are indicated with their arrows.

(b) Structural alignment of ADF/cofilin proteins. Identical residues are shaded in black, dark-grey shading with white letters indicates highly conserved residues,

whereas light-grey shading with black letters represents similar residues. Below the alignment, arrows represent b strands, whereas cylinders represent a helices;

the asterisk denotes the site of the conserved phosphoregulated N-terminal serine. Protein accession numbers are listed in Appendix S1. Species names are

abbreviated as follows: Pp, Physcomitrella patens; At, Arabidopsis thaliana; Ll, Lilium longiflorum; Zm, Zea mays; Ac, Acanthamoeba castellanii; Sc, Saccharomyces

cerevisiae; Sp, Schizosaccharomyces pombe; Hs, Homo sapien. Structural information was acquired for AtADF1 (Protein Data Bank (PDB) 1FS7), AcACTP

(actophorin, PDB 1AHQ), ScCOF (PDB 1COF), SpCOF (PDB 2I2Q), HsCOF 1 (PDB 1QAX) and HsADF (PDB 1AK6) with PDB numbers listed in parentheses.
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the area of GFP-deficient plants using intrinsic chlorophyll

fluorescence seven days after transformation. CDS-RNAi

plants are smaller in area compared with GUS-RNAi con-

trols (Figure 2b), and this difference is highly significant

(P < 0.0001).

A nearly identical phenotype was observed when trans-

forming NLS-4 with an RNAi construct that targets both GUS

and a region of the non-coding, 3¢-untranslated region (UTR)

sequence of ADF (UTR-RNAi; Figures 1a and 2a). The area of

UTR-RNAi plants is significantly different from that of GUS-

RNAi plants (P < 0.0001), but not from that of CDS-RNAi

plants (Figure 2b, P = 0.8738). Scanning electron micro-

graphs show that GUS-RNAi plants maintain polarized,

filamentous structures with numerous branches, whereas

UTR-RNAi plants are small and lack developed branches

(Figure 2c). Interestingly, CDS-RNAi plants were more likely

to show weak chlorophyll fluorescence and death, com-

pared with UTR-RNAi plants, especially 8–10 days after

transformation with the RNAi construct. This suggests that

RNAi targeting the coding sequence of ADF is more toxic

than RNAi targeting the 3¢ UTR. Control GUS-RNAi plants

were never observed to undergo a loss of chlorophyll

fluorescence.

Moss ADF is subject to phosphorylation in vivo

To determine whether ADF is phosphorylated in moss, we

raised a polyclonal antibody against moss ADF, and used it

for 2D western blot analysis. The affinity purified polyclonal

antibody binds exclusively to an�18-kDa protein in wild-type

protein extracts (Figure 3a, lane 1), and to a purified

recombinant His6-PpADF protein (Figure 3a, lane 2). Over-

expression of ADF in moss extracts leads to a specific

increase in the ADF signal at the same molecular weight (data

not shown), indicating that the antibody is specific for ADF.

We used the affinity purified ADF antibody to probe blots

containing total protein extracts separated by 2D electropho-

resis. Extracts from wild-type protonemal tissue isolated in

the presence of phosphatase inhibitors exhibited two spots,

with the more acidic spot present at considerably lower levels

Figure 2. Comparison of actin depolymerizing

factor (ADF) RNA interference (RNAi) plants.

(a) Brightfield and corresponding chlorophyll

fluorescence images of GFP-deficient plants are

shown. Arrows mark conspicuously brown cells

and their corresponding dim chlorophyll fluores-

cence. Scale bar: 100 lm.

(b) Analysis of plant area as an estimate of plant

growth. Chlorophyll fluorescence was used to

determine plant area. Bars represent the average

plant area and error bars represent standard

error of the mean values. Plants were analyzed

from three experiments. The total numbers of

plants for each construct were as follows: GUS-

RNAi, n = 80; CDS-RNAi, n = 71; and UTR-RNAi,

n = 77, where ‘n’ is the total number of plants

analyzed. P-values from pairwise comparisons

are as follows: GUS-RNAi versus CDS-RNAi,

P < 0.0001; GUS-RNAi versus UTR-RNAi, P <

0.0001; CDS-RNAi versus UTR-RNAi, P = 0.8738.

(c) Scanning electron micrographs of GUS-RNAi

and UTR-RNAi plants. The upper left panel

shows a representative GUS-RNAi plant. The

upper right panel shows the magnified area

depicted by the white box in the upper left panel.

The lower left and lower right panels are repre-

sentative UTR-RNAi plants, and are shown in the

insets in the upper right panel at the same scale

as the upper left panel for comparison of plant

size. Scale bar for the upper left panel: 50 lm.

Scale bar for all the other panels: 10 lm.
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(Figure 3b). This suggests that the non-phosphorylated to

phosphorylated ratio of moss ADF is high. When extracts

were isolated in the absence of phosphatase inhibitors, the

more acidic ADF spot is reduced fourfold with respect to the

more basic spot (Figure 3b). The reduction in the acidic spot

resulting from the lack of phosphatase inhibitors suggests

that this spot represents a phosphorylated species. To test

that the shift we observed corresponds to the expected shift

resulting from phosphorylation, we tested the 2D electro-

phoresis migration pattern of ADF mutants that mimic a

constitutively unphosphorylated state [from serine 6 to

alanine (S6A); predicted pI = 5.76] or a phosphomimetic

state [from serine 6 to aspartate (S6D); predicted pI = 5.48].

We overexpressed ADF S6A or S6D in moss protoplasts, and

protein extracts were separated in parallel by 2D electropho-

resis. The unphosphorylatable ADF S6A co-migrated toward

the basic pI, whereas the phosphomimetic ADF S6D

co-migrated toward the acidic pI (data not shown).

Phosphoregulation of ADF is required

for efficient tip growth

We performed a complementation analysis to ensure that

the specific knock-down of ADF is responsible for the loss of

plant viability and tip growth. We co-transformed NLS-4

with UTR-RNAi and the ADF coding sequence under the

control of the strong constitutive maize ubiquitin promoter.

The ADF expression construct has a nopaline synthase

(NOS) terminator in place of the ADF 3¢-UTR sequence, and

is therefore not targeted by UTR-RNAi. Rescued plants

phenocopied GUS-RNAi plants with very similar average

areas (Figure 4; Table S2). Like control plants, comple-

mented plants were never observed to undergo a loss of

chlorophyll fluorescence. This indicates that the senescence

phenotype is specific to the loss of ADF function.

We used this complementation assay to determine the

physiological significance of ADF phosphorylation. Phos-

phorylation of ADF/cofilin was shown to significantly

reduce the interaction between ADF and actin (Blanchoin

et al., 2000; Chen et al., 2002). Although plant area of UTR-

RNAi plants could be fully rescued by expression of wild-

type ADF, expression of unphosphorylatable ADF S6A or

phosphomimetic ADF S6D only partially rescued plant

area (Figure 4a,b; Table S2). These data strongly indicate

that ADF phosphorylation is important for efficient tip

growth.

Two additional mutants were analyzed to further address

the site of ADF phosphorylation. We were concerned

about the presence of two adjacent N-terminal serine

residues in the moss ADF sequence (Figure 1b), and the

possibility that one serine might be regulated in the absence

of a phosphorylation site at the other serine. To address this,

we generated a serine 5 to alanine and serine 6 to alanine

(S5AS6A) double mutant to prevent phosphorylation at both

sites. Complementation of UTR-RNAi with S5AS6A was

indistinguishable from S6A, indicating that the residual

complementing activity of S6A is not caused by a second

phosphate acceptor site at serine 5 (Figure 4a,b). We also

generated a serine 6 to threonine (S6T) mutation to maintain

an amino acid with similar biochemical properties to serine,

including the potential capability of being phosphorylated.

Although complementation with S6T did not fully rescue

plant area, it exhibited a greater degree of rescue compared

with S6A, S5AS6A and S6D (Figure 4; Table S2). This

evidence suggests that a threonine at the sixth position of

moss ADF can also be phosphorylated, enabling more

efficient tip growth.

We noticed differences in plant morphology resulting

from complementation with the different ADF constructs.

The ADF- and S6T-rescued plants resembled control plants

with many filamentous outgrowths, whereas the S6A and

S5AS6A plants had fewer and shorter filamentous exten-

sions (Figure 4a). In contrast, the S6D plants resembled the

UTR-RNAi plants with an overall rounded plant morphology,

lacking polarized extensions and suggestive of an inhibition

of tip growth. Notably, S6D plants never exhibited chloro-

phyll senescence. The fact that S6D plants were viable, but

unable to perform tip growth, strongly suggests that ADF

plays an essential role in tip growth.

To quantify these morphological differences, we

measured two morphometric parameters: circularity and

Figure 3. Moss actin depolymerizing factor (ADF) is phosphorylated in vivo.

(a) The affinity purified anti-ADF antibody binds exclusively to ADF in moss.

Lane 1 contains 6.5 lg of wild-type total protein extract, and lane 2 contains

40 ng of purified His6-PpADF. Protein samples were blotted onto nitrocellu-

lose and were probed with affinity purified anti-ADF polyclonal antibodies.

Both lanes are from the same blot.

(b) ADF and phospho-ADF are detectable in moss. 2D western blots probed

with affinity purified anti-ADF antibody. A 100-lg sample of total protein from

wild-type protonemal tissue was treated with or without phosphatase

inhibitors (�PI). For each panel the acidic pI is to the left, and the basic pI is

to the right.
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solidity. Briefly, circularity is a measure of the degree of

polarization, where a value of 1 represents a perfect circle

whereas values approaching 0 have a more linear structure.

Solidity is used to estimate the degree of outward cell

branching, where a plant having no branches is solid and

has a value of 1, whereas a plant with many branches has

empty space between the branches lowering the solidity

value. Using these parameters, we found that the unpho-

sphorylatable ADFs, S6A and S5AS6A, rescued plant mor-

phology to a greater degree when compared with the S6D

mutant (Figure 4c,d; Table S2). Based on work from other

systems, the alanine mutants should be capable of binding

actin, whereas the phosphomimetic mutant should have a

decreased affinity for actin (Blanchoin et al., 2000; Chen

et al., 2002; Ressad et al., 1998). Taken together, this implies

that ADF actin binding activity is required for tip growth, and

that the regulation of actin binding is necessary for efficient

growth. Furthermore, morphometric analysis provides addi-

tional evidence that serine 6 is the site of phosphorylation.

Complemented ADF and S6T plants are statistically indistin-

guishable; moreover, S6A and S5AS6A plants were rescued

to a similar extent (Figure 4c,d; Table S2).

Expression constructs restore ADF protein

levels to control levels

The inability of unphosphorylatable and phosphomimetic

ADF mutants to fully rescue plant size or morphology

Figure 4. Actin depolymerizing factor (ADF)

phosphoregulation is essential for efficient tip

growth and polarization.

(a) Representative images of chlorophyll fluores-

cence from GFP-deficient plants taken 1 week

after transformation. Panels with a plus sign

represent plants transformed with UTR-RNAi

plus the indicated expression construct. Green

spots are plants that have been killed by hygro-

mycin selection. Notice a resistant plant with

nuclear GFP in the lower left panel. Scale bar:

100 lm for all panels.

(b) Mean area of chlorophyll fluorescence from

GFP-deficient plants.

(c) Mean circularity of GFP-deficient plants.

Circularity values are determined using the

equation 4p(area/perimeter2), where values

approaching one are more circular.

(d) Mean solidity of GFP-deficient plants. Solidity

values are determined using the equation area/

convex hull area, where values approaching one

are more compact. In (b), (c) and (d), error bars

represent the standard error of the mean from

nine experiments: GUS-RNAi, n = 233; UTR-

RNAi, n = 198; +ADF, n = 112; +S6A, n = 80;

+S5AS6A, n = 71; +S6D, n = 90; +S6T, n = 88;

where n is the total number of plants analyzed.

P-values are given in Table S2.
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may be a consequence of reduced ADF expression levels.

We tested this by performing immunofluorescence with

the affinity purified anti-ADF antibody on RNAi plants with

and without ADF expression constructs (Figure 5a,b). Only

a fraction of transformed plants are actively silencing,

marked by the loss of the nuclear GFP-GUS reporter.

Thus, it is very difficult to obtain enough material to

analyze protein levels using western blots. Instead, we

used the immunofluorescence of individual plants to

estimate the protein levels present in actively silenced

plants. All images were acquired using identical camera

settings to enable quantification of fluorescence intensity

as a measure of protein expression level. As a back-

ground control, GUS-RNAi plants were probed with IgG.

We determined that ADF protein levels in GUS-RNAi

plants are indistinguishable from levels in ADF, S6A and

S6D plants (Figure 5; Table S3), indicating that under

these conditions, expression from the maize ubiquitin

promoter restores wild-type ADF levels. In contrast, UTR-

RNAi plants have a significantly reduced ADF signal

(Figure 5; Table S3), demonstrating that the RNAi

construct effectively reduces ADF protein levels. Further-

more, these data show that the phenotypes observed with

S6A and S6D are specific to the introduced mutation,

and are not caused by a lack of expression from the

constructs.

ADF localizes to the cytoplasm in moss protonemal cells

We used the affinity purified anti-ADF antibody to determine

the subcellular localization of ADF in moss protonemal cells.

Figure 5. Actin depolymerizing factor (ADF)

complementation restores protein to control

levels.

(a) Determination of relative ADF expression

levels. GFP-deficient plants were immunostained

with affinity purified anti-ADF antibodies. Panels

with a plus sign represent plants transformed

with UTR-RNAi plus the indicated expression

construct. The left panel shows chlorophyll flu-

orescence, the middle panel is the immunofluo-

rescence signal from either rabbit IgG, as a

control for background fluorescence (top row),

or affinity purified anti-ADF rabbit polyclonal

antibody (all other rows). Right panels are the

merged images. Scale bar: 100 lm, and applies

to all panels.

(b) Mean fluorescence was determined as a

fraction of GUS-RNAi plants immunostained

with affinity purified ADF antibody. Background

values obtained from GUS-RNAi IgG immuno-

stained plants were subtracted from all anti-ADF

immunostained plants. Error bars represent

standard error of the mean from four experi-

ments (GUS-RNAi, n = 25; UTR-RNAi, n = 39;

+ADF, n = 26; +S6A, n = 30; +S6D, n = 44;

n =number of plants). P-values are shown in

Table S3.

Figure 6. Actin depolymerizing factor (ADF) localizes to the cytoplasm in

moss cells. Localization of ADF in moss tip cells.

A transgenic line expressing GFP was immunostained with the affinity

purified anti-ADF rabbit polyclonal antibody. Two representative cells are

shown. Scale bar: 10 lm, and applies to all panels.
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Under conditions that preserve the actin cytoskeleton (see

below), we observed that ADF is diffusely localized to the

cytoplasm (Figure 6). We performed immunofluorescence

on wild-type plants (data not shown) and on a transgenic

line expressing GFP (Figure 6). The GFP line allowed us to

analyze the localization of ADF with respect to GFP, another

cytosolic protein. As is the case for GFP, which easily dif-

fuses in and out of the nucleus in moss cells, ADF is also

found in the nucleus, but perhaps to a lesser extent (com-

pare ADF and GFP panels in Figure 6). ADF also appears as

punctae on the chloroplasts (Figure 6).

ADF is required for proper organization

of the actin cytoskeleton

To determine how a loss of ADF affects the actin cytoskele-

ton, we labelled the actin cytoskeleton with Alexa-488-

phalloidin in cells actively undergoing RNAi (Figure 7). In

GUS-RNAi control cells, we observed a subapical cortical

‘fringe’ structure (Vidali et al., 2007). This structure is com-

posed of parallel actin bundles closely associated with the

cell cortex (Figure 7, square brackets). Behind the fringe,

actin is generally longitudinally oriented in control cells, and

is also found tightly surrounding chloroplasts (Figure 7,

arrows). Strikingly in UTR-RNAi cells, the subapical cortical

fringe structure is absent and instead prominent actin

structures, which are composed of actin bundles appearing

to emanate from a point on the cell cortex, are visible

(Figure 7, arrow heads). These structures resemble ‘stars’,

and many UTR-RNAi cells contained more than one actin

‘star’. In addition to these prominent cortical actin struc-

tures, UTR-RNAi cells had actin filaments throughout the

cell. In contrast to controls cells, actin filaments in UTR-RNAi

cells did not appear to have a uniform orientation. The actin

filament organization was rescued in UTR-RNAi plants

complemented with wild-type ADF (Figure 7).

We observed a variety of actin filament organizations in

plants rescued with S6A and S6D. In general, actin filaments

in S6A plants more closely resembled those of GUS-RNAi or

ADF-rescued plants. The subapical cortical fringe was

detected in most cells, even in cells that were smaller than

controls (Figure 7, +S6A middle panel). In contrast, the S6D

rescued plants had a wider variety of actin filament organi-

zation. In some cases, we observed cortically associated

actin filament ‘bars’ or patches (Figure 7, +S6D middle and

right panels, respectively). Surprisingly S6D plants did not

Figure 7. Actin depolymerizing factor (ADF) is required for proper F-actin organization. F-actin organization in moss tip cells.

Alexa-488 phalloidin was used to label F-actin in actively growing moss cells. Three representative cells are shown for each treatment. Panels with a plus sign

represent plants transformed with UTR-RNAi plus the indicated expression construct. Arrows indicate actin filaments associated with chloroplasts. Square brackets

denote the cortical fringe. Arrowheads denote the actin ‘stars’ present in UTR-RNAi. Scale bar: 10 lm, and applies to all panels.
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have the actin ‘stars’ observed in UTR-RNAi plants, sug-

gesting that the presence of S6D appears to partially rescue

the actin cytoskeletal organization. In some S6D plants that

had cells with normal morphology, we observed wild-type

actin filament organization (Figure 7, +S6D left panel). Taken

together, these data suggest that ADF is essential for the

proper organization of actin filaments in moss tip growing

cells, and that phosphorylated ADF is unable to properly

organize the actin cytoskeleton.

Discussion

ADF is essential for plant viability and

is required for tip growth

Using the moss P. patens as a model system, we have

shown that ADF is essential for viability, and have provided

evidence that ADF is important for tip growth. Until this

study, only ADFs from seed plants had been characterized,

and these plants typically contain multiple ADF isoforms.

For example, Arabidopsis has twelve isoforms, many of

which are expressed and some of which show tissue-specific

expression patterns (Dong et al., 2001a; Maciver and Hus-

sey, 2002; Ruzicka et al., 2007). In contrast, we identified a

single ADF gene in moss. It appears that the number of ADF

genes has increased from non-vascular to vascular plants

over the �400 million years of evolution separating mosses

from seed plants. To investigate this, we searched for ADF

genes in the lycophyte Selaginella moellendorfii, a member

of the oldest living vascular plant division. We discovered

that the genome of S. moellendorfii (http://moss.nibb.ac.jp)

has two loci highly similar to ADF, suggesting that as plants

evolved a vasculature, more ADF genes became necessary.

The presence of multiple ADF isoforms in vascular plants,

with differential expression patterns in seed plants, suggests

tissue-specific roles for each ADF that were not necessary in

early plant evolution.

In addition to fewer ADF isoforms, the moss ADF gene

structure is divergent from those found in seed plants

because it lacks introns. ADFs in seed plants typically

possess two introns at conserved positions, where the first

intron has been shown to be critical for proper expression

(Jeong et al., 2007; Mun et al., 2002). Interestingly, the two

ADF genes in S. moellendorfii have a single intron at the

second conserved position. The presence of introns in

vascular plant ADFs suggests that the more complex tissue

and developmental patterns of these plants may require

regulation of ADF gene expression. This may be accom-

plished by the presence of introns and/or multiple isoforms

of ADF. In contrast, the lack of introns in the single ADF gene

in moss may enable higher levels of expression, as has been

found in one study comparing genes in P. patens, where

shorter gene structures equated to higher expression levels

(Stenoien, 2007).

We used RNAi to investigate the consequences of reduc-

ing ADF levels in moss tip-growing protonemal cells. We

observed inhibition of tip growth when employing either the

CDS-RNAi or UTR-RNAi constructs to target either the

coding sequence or the 3¢-UTR of the ADF transcript,

respectively. This result differs from previous studies of

ADF in Arabidopsis, where reduction of ADF1 resulted in

enhanced tip growth in root hairs (Dong et al., 2001b). A

possible explanation for this is that not all ADF function was

reduced in the root hairs because of the presence of other

ADF isoforms. In moss, we also observed cell death as a

result of loss of ADF function, demonstrated by a reduction

or complete loss of chlorophyll fluorescence, indicating that

ADF is essential for plant viability.

Additionally, we observed that plants lacking ADF func-

tion were unable to properly organize their F-actin cytoskel-

eton. Instead of longitudinally oriented actin filaments and a

prominent subapical actin fringe, UTR-RNAi cells exhibited

striking cortical actin structures resembling ‘stars’. Interest-

ingly, these structures were typically observed on the cortex

of the cell most distal to the neighbouring cell. This suggests

that polarizing machinery may still be in place in these cells,

but in the absence of ADF activity, the cortical fringe is

unable to organize itself. Perhaps the cortical ‘stars’ are

precursors to the fringe structure observed in control cells.

The loss of the cortical actin fringe in UTR-RNAi cells

suggests that ADF may have a direct role in organizing this

cortical structure. Indeed in pollen tubes, ADF appears to

localize specifically to the cortical fringe or collar (Chen

et al., 2002; Lovy-Wheeler et al., 2006). However, we did not

observe any specific localization of ADF to this region of the

cortex. Instead, ADF appears to be localized diffusely to the

cytoplasm. One region where ADF may co-localize with actin

is on the chloroplasts, as we observe that ADF and actin both

associate with chloroplasts.

The use of the UTR-RNAi construct allowed us to perform

complementation studies by co-expressing the coding

sequence of ADF under the control of a strong constitutive

promoter. Co-expression of ADF fully rescued plant viability

and actin cytoskeleton organization, demonstrating that the

UTR-RNAi phenotype is not a consequence of silencing

another essential gene.

ADF phosphoregulation is physiologically

relevant for tip growth

Analysis of protein extracts suggests that moss uses phos-

phorylation to control ADF activity. Wild-type protein

extracts isolated in the presence of phosphatase inhibitors

exhibited both ADF and phospho-ADF spots. The phospho-

ADF spot is present at significantly lower levels compared

with the non-phosphorylated ADF isoform. This implies that

a balance between active and inactive ADF isoforms is

maintained in vivo, and suggests that kinases and
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phosphatases regulating ADF are present in moss. The kin-

ases and phosphatases involved in regulating ADF/cofilin in

animals do not appear to be present in plants (Allwood et al.,

2001; Bamburg, 1999); instead, in vitro evidence supports a

role for a calcium-dependent CDPK in regulating plant ADF

(Allwood et al., 2001; Smertenko et al., 1998). Calcium gra-

dients are regulated spatially and temporally in tip-growing

cells (Hepler et al., 2001), and CDPKs have been shown to be

important for tip growth (Yoon et al., 2006); thus, CDPKs

appear to be likely candidates for regulating the activity of

ADFs during tip growth.

The ability to complement the UTR-RNAi phenotype with

the coding sequence of ADF allowed us to investigate the

relevance of ADF phosphoregulation in planta. The unpho-

sphorylatable (S6A) and phosphomimetic (S6D) mutants

rescued plant area to a similar extent, but have significant

differences in their rescue of plant morphology and actin

cytoskeletal organization. Interestingly, we did not observe

the prominent F-actin ‘stars’ that were present in UTR-RNAi

cells, but we did observe cortical actin patches and ‘bars’ in

the S6D rescued plants. This suggests that S6D may have

some residual function in helping to organize the subapical

cortical fringe. Importantly, the observed rescue of S6D and

S6A is not a result of aberrant expression of the mutants,

because protein levels are indistinguishable from control

plants. These data demonstrate that both phosphorylation

and dephosphorylation of ADF are important for tip growth.

The partial rescue of plant area with S6D is surprising, as

we expected that this mutant would not interact with actin

(Moriyama et al., 1996). This observation suggests that S6D

may still have some actin-binding activity, which is sup-

ported by biochemical studies of actophorin, the Acantha-

moeba castellanii ADF/cofilin protein (Blanchoin et al.,

2000). Although we were unable to find distinct differences

between S6A- and S6D-expressing plants regarding total

plant area, we did notice obvious morphological differences.

This indicates that ADF’s actin binding activity is critical for

determining polarization.

An alternative explanation for the partial rescue by S6D

is that ADF may bind to another protein independently of

its N-terminus, enabling partial function and a limited

level of growth, but with a distinct loss of polarization.

This interaction would be absent upon ADF depletion, as

occurs for UTR-RNAi plants. A possible candidate is actin

interacting protein (AIP) – a known binding partner to

both ADF and actin (Okada et al., 1999; Rodal et al., 1999).

In combination, ADF and AIP were shown to synergisti-

cally increase actin disassembly to far higher levels than

either protein could achieve on its own (Allwood et al.,

2002). Thus, interaction with AIP may still be possible

with the S6D mutant.

As threonine can often be recognized and phosphorylated

by serine/threonine kinases, we generated the S6T mutant to

provide further evidence that regulation of the phospho-

state of ADF is necessary for tip growth. LIMK, the kinase

responsible for phosphorylation of ADF/cofilin proteins in

animal cells, was shown to phosphorylate both serine and

threonine, but not tyrosine, residues using an in vitro

phosphorylation assay (Okano et al., 1995). Notably,

Arabidopsis ADF5 has a threonine in place of the conserved

N-terminal serine, further suggesting that an N-terminal

threonine can be phosphorylated (Figure 1a; Dong et al.,

2001a). Although the S6T ADF mutant did not fully rescue

plant area, it showed much greater partial rescue compared

with the S6A and S6D plants, suggesting that phosphore-

gulation is necessary for efficient tip growth, and that

serine 6 is the site of phosphorylation.

As ADF is essential, we have been able to address the

physiological significance of ADF phosphorylation in plants.

By performing complementation of the loss-of-function

phenotype, we show that phosphorylation of ADF is

required for efficient tip growth. This suggests that optimal

rates of growth require the presence of a kinase that

negatively regulates ADF function. In addition, the phosp-

homimetic mutant inhibits tip growth in the absence of

endogenous ADF, and this inhibition is not a result of death.

Thus, we provide strong evidence that ADF is essential for

tip growth via the ability to interact with actin and organize

the F-actin cytoskeleton. Now we are poised to study the

molecular basis of ADF function and regulation in plant cell

tip growth.

Experimental procedures

Protein sequence alignment

Actin depolmerizing factor/cofilin family proteins with available
crystal or NMR structures were downloaded from the Protein Data
Bank (http://www.pdb.org). SWISS-PDBVIEWER (Guex and Peitsch,
1997) was used to generate an alignment based on tertiary struc-
ture. All sequences were fitted to the Arabidopsis ADF 1 crystal
structure. ADF protein sequences from various species without
available structures were obtained from the Swiss-Prot database
(http://www.expasy.org/sprot), whereas the P. patens ADF protein
sequence was determined based on the cDNA sequence. These ADF
sequences were manually fitted to the structural alignment.

Generation of constructs

The ADF RNAi constructs were created by PCR amplification of
either the coding sequence or the 3¢-UTR of ADF from P. patens
cDNA using the primers indicated in Table S4. PCR fragments
were cloned into pENT-TOPO (Invitrogen, http://www.invitrogen.
com) following the manufacturer’s recommendations, and the
resulting constructs were sequenced. LR clonase (Invitrogen) reac-
tions were used to transfer either the coding sequence or 3¢-UTR
sequence into inverted-repeat GUS-Gateway cassette fusions of
the destination vector pUGGi (Bezanilla et al., 2005) to generate
the CDS-RNAi or UTR-RNAi constructs, respectively. Restriction
enzyme digestion was used to verify these constructs. The vector
pUGi (Bezanilla et al., 2005) was the GUS-RNAi control.
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Expression constructs were generated by PCR amplifying the
ADF coding sequence from P. patens cDNA using a 5¢-CACC
sequence on the specific primers for oriented cloning into the
pENT-TOPO vector (Invitrogen). The S6A, S5AS6A, S6D and S6T
mutations were introduced by site-directed mutagenesis (Weiner
et al., 1994) using the primers listed in Table S4. All mutant
and wild-type ADF constructs were sequenced and transferred
via LR clonase to a pTHUBI-Gate destination vector (kindly
provided by P.-F. Perroud and R.S. Quatrano, Washington
University in St Louis, http://www.wustl.edu), which drives gene
expression using the constitutive maize ubiquitin promoter
(Bezanilla et al., 2005).

For moss transformations, plasmids were purified using the
GenElute HP Plasmid MaxiPrep kit (Sigma-Aldrich, http://www.
sigmaaldrich.com) following the manufacturer’s recommendations,
or with a conventional maxiprep protocol (Sambrook et al., 1989)
without the chloroform extraction.

Tissue culture and protoplast transformation

All moss tissue culture was performed as previously described
(Bezanilla et al., 2003). Protoplast transformation procedures are
described in Appendix S1.

Scanning electron microscopy

One-week-old plants were analyzed by scanning electron micro-
scopy as described previously (Vidali et al., 2007).

Recombinant protein purification

Glutathione-S-Transferase (GST)-ADF and His6-ADF were constr-
ucted by transferring the coding sequence of ADF from the pENT-
ADF vector into the pDEST15 and pDEST17 vectors, respectively
(Invitrogen) with an LR clonase reaction. A detailed description of
protein purification is given in Appendix S1.

Antibody production and purification

Polyclonal antibodies were generated in a rabbit injected with GST-
ADF isolated from a polyacrylamide gel and boosted with GST-ADF
in solution, following standard antibody production methods
(Harlow, 1988). Affinity purification of the ADF polyclonal antibody
is described in Appendix S1.

Western blotting

A detailed description of protein extraction and 2D electrophoresis
is presented in Appendix S1. Western blotting procedures were
performed as described previously (Vidali and Hepler, 1997). Protein
isoelectric points were predicted using the pI/MW program (Bjellq-
vist et al., 1993) from the Swiss Institute of Bioinformatics (SIB).

Morphometric analysis

Four days after transformation, plants were transferred to plates
containing hygromycin (15 lg ml)1). On day 7, images of GFP-
deficient plants were captured and analyzed as previously described
(Vidali et al., 2007). Plants covering ‡500 lm2 were counted in the
analysis. The plant area is determined from the total number of
adjacent pixels corresponding to a GFP-deficient plant, whereas
circularity is defined as 4p(area perimeter)2), and solidity is defined
as the area/convex hull area of those same plants.

Immunofluorescence

For quantification of protein levels in 1-week-old plants, we
followed the procedure described in Vidali et al. (2007), with the
following modifications. All plants were incubated overnight with
1 lg ml)1 affinity purified ADF antibody. For quantification of
nonspecific binding, GUS-RNAi plants were separately incubated
with 1 lg ml)1 rabbit IgG (Jackson ImmunoResearch, http://www.
jacksonimmuno.com).

For immunolocalization of ADF, either wild type or a moss line
stably expressing GFP was cross-linked directly on the agar growth
medium in 0.3 mM m-maleimidobenzoyl-N-hydroxysuccinimide
ester (MBS; Pierce, http://www.piercenet.com) and 1 mM ethylene
glycol bis(succinimidylsuccinate; EGS; Pierce) in 5 ml of PME
buffer (100 mM PIPES, pH 6.8, 5 mM MgSO4, 10 mM EGTA). After
15 min, gluteraldehyde (Electron Microscopy Sciences, http://
www.emsdiasum.com) was added to a final concentration of 0.5%
and incubated for 25 min. Plants were recovered into 15-ml conical
tubes and 10 ml of PME was added. After centrifugation at 300 g for
10 min, 12.5 ml of supernatant was removed and reconstituted with
12.5 ml of PME. Plants were immobilized in 0.7% low-melting-point
agarose, type VII (Sigma-Aldrich) in PME. All subsequent solutions
were added to the plants attached to the coverslip. After two 5-min
washes in PME, plants were incubated in 1% saponin in PME for
30 min. All subsequent steps were identical to the immunofluores-
cence treatment described above, except that TBSS (125 mM NaCl,
25 mM Tris–HCl, pH 8, 0.1% saponin) was used in place of TBST.
Plants were imaged with a Nikon confocal microscope (Nikon
D-Eclipse-C1; Nikon, http://www.nikon.com) on an inverted stand
(Nikon Eclipse-TE2000-S) fitted with a 60· water immersion 1.2
numerical aperture objective. A 488 argon laser was used to excite
GFP, whereas a 543 helium-neon laser excited CY3. Confocal
sections were taken at 0.5-lm intervals, typically through to at least
the bottom half of the cell.

F-actin labelling

One-week-old plants were fixed and stained for actin using the same
procedure as described previously (Vidali et al., 2007).

Statistical analysis

We performed statistical analysis as described previously (Vidali
et al., 2007).
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